

Invitation OeAD AlumniTalks

Thursday 15 October, 2015

Former OeAD scholars present \& discuss their personal and professional experiences before and after their stay in Austria.

Invitation

OeAD scholar
 \& what next?
 whext?

OeAD AlumniTalks

Vittorio Pace, Italy

Railway Chemistry. Departure Station: Italy, Direction: Austria. How to approach an international academic career in chemistry!

Thursday 15 October, 2015, 18:00
OeAD, Ebendorferstraße 7, 1010 Wien

Introduction	Main speaker
Michael Schedl	Vittorio Pace was born in 1981 in Italy and obtained a Master degree in
OeAD - Centre for International Cooperation and Mobility	Pharmacy in 2005 from the University of Perugia. Later on, he started his doctoral studies in Organic Chemistry at the Complutense University
Railway Chemistry. Departure Station: Italy, Direction: Austria. How to approach an international academic career in chemistry!	of Madrid (UCM) where he defended his PhD in July 2010. During the
Vittorio Pace, Italy	doctoral studies he also received a postgraduate Master in Chemistry and in Drug Design and Development. In September 2010 he commenced
General Discussion	postdoctoral training with Prof. Holzer at the University of Vienna as an
Socialising \& Refreshments	Ernst Mach fellow. In August 2011 he joined the University of Manchester (UK) for a 2-years research project. In October 2013 he moved to the Stockholm University (Sweden) being awarded with a Senior Postdoctoral
Please register for the event by 10 October 2015 at:	Fellowship. In August 2014 he came back to Vienna as a Group Leader in
www.oead.at/events4scholars	Synthetic Chemistry in the Department of Pharmaceutical Chemistry of the University Vienna. In November 2014 he received the Habilitation for
	Associate Professor of Organic Chemistry by the Italian Ministry of Education. His main research activity deals with the development of synthetic tactics based on the use of organolithiums methods with vistas to their application in synthetic medicinal chemistry.

