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1 Introduction 

Many engineering and management projects rely on meteorological and hydrological data 

such as rainfall or discharge. This kind of data is required, for instance, for the design of 

hydraulic structures such as channels and reservoirs, but also for flood studies, irrigation 

design projects and water resources planning and management. 

Therefore, many countries install meteorological stations, and discharge gauges, in order to 

develop a monitoring network for capturing the hydro-meteorological conditions in specific 

areas, catchments or regions. The quality of the data collected in such monitoring network is 

very diverse and strongly depends on the capacities and resources of the country. However, 

no matter how much data there is, or how good the data is, in the end, engineers must always 

find solutions to use the information available and to come up with, e.g. as is the case in this 

report, an estimation of design values and extreme values. 

The precipitation ta measured at specific locations are punctual data, which means that they 

are not necessarily representative for a territory or a long time period. In order to calculate 

structural design values and extreme values, interpolation must be done in time and space. 

In this report, the hydro-meteorological data from the Sio-Malaba-Malakisi river basin in Kenya 

has been studied. The quality of the measured data in the area is rather poor, due to data gaps 

and large measuring intervals. The application of hydrological models can be used to extend 

discharge time series, when observations are too short, in order to enhance the data basis for 

estimating design and extreme values. In this study, the focus lies on the Sio River Basin. 

This project has three main objectives: 

 To provide a full time series for each precipitation measuring station in the area 

by filling the data gaps (temporal interpolation) 

 To estimate the areal precipitation for the Sio River basin 

 To apply a hydrological model to extend the discharge information for the Sio 

River 

 To calculate extreme values of discharge for different return periods, based on 

several data inputs 
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2 Study area and data basis 

2.1 Study area  

The study area considered for this paper is part of the Sio River basin, which drains into the 
Lake Victoria in Kenya. As such, the Sio is a tributary to the White Nile. Even though the Sio 
River Basin covers a basin of 1 402.11 km², this study focuses on the upstream area above 
the discharge station “1AH01” (blue triangle in Figure 1), that covers an area of 1 010.90 km², 
equivalent to a 72% of the whole Basin. The elevation ranges in the whole sub-basin lies 
between 1077 to 1671 m.a.s.l.  

 

Figure 1. Study area of the Sio River Basin, including precipitation and discharge stations 

2.2 Data basis 

Precipitation data is available in 25 stations. Besides precipitation, four discharge stations are 
also available in the near-by area. This study however only covers the catchment upstream of 
the discharge measurement “1AH01”. Details on location, elevation and names of the stations 
can be seen in Figure 1 and Table 1. .  
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Figure 2. The Sio River and the Busia-Kisumu road bridge seen from upstream, where the 
discharge measurement station “1AH01” is located. 

  
Figure 3. Discharge measurement station “1AH01” at the Sio 

 

 

The data comes from two sources, one is the Kenya Meteorological Department (KMD) and 
the second one is the Water Resources Authority of Kenya (WRA). Five stations have daily-
based data (WRA data), while the other 19 stations are sums of precipitation values for every 
10 days (KMD data). 

One additional source of daily precipitation data is also considered for this study, namely the 
“Climate Hazards Group InfraRed Precipitation with Station (CHIRPS)”. CHIRPS was 
developed by scientists at the University of California, Santa Barbara and the U.S. Geological 
Survey Earth Resources Observation and Science Center under the direction of Famine Early 
Warning Systems Network (FEWS NET) and has over 35 years of quasi global rainfall data. 
This data source was included in order to support the process of gap filling, which will be 
explained in detail in the Chapter 3.1. 
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Table 1. Precipitation, discharge and Temperature/Evapotranspiration Stations 

ID Station name Measured variable Source Longitude Latitude Elevation  

(DEM 90m) 

8933026 Port- Victoria  Catholic  
Mission 

Precipitation KMD 33.98 0.12 1134.00 

8934016 Lugari  Forest Station Precipitation KMD 34.90 0.67 1672.81 

8934023 Sang'alo Institute Of 
Science & Technology 

Precipitation KMD 34.58 0.53 1419.73 

8934030 Nangina  Catholic  
Mission 

Precipitation KMD 34.10 0.28 1196.22 

8934037 Lukolis  Dispensary -  
Busia 

Precipitation KMD 34.25 0.63 1144.17 

8934060 Kimilili Agricultural 
Department 

Precipitation KMD 34.72 0.80 1670.82 

8934061 Malava Agiricultural 
Station 

Precipitation KMD 34.85 0.45 1646.24 

8934078 Kaimosi Farmers 
Training  Centre. 

Precipitation KMD 34.95 0.22 1668.48 

8934096 Kakamega 
Meteorological Station 

Precipitation KMD 34.75 0.27 1523.86 

8934098 Kimlili Forest Station Precipitation KMD 34.68 0.87 2058.22 

8934105 Busia Farmers Training 
Centre 

Precipitation KMD 34.10 0.47 1228.39 

8934116 Amukura Chief's 
Centre 

Precipitation KMD 34.27 0.57 1297.89 

8934119 Webuye  Agricultural  
Office 

Precipitation KMD 34.77 0.62 1561.76 

8934134 Bungoma Water 
Supply 

Precipitation KMD 34.57 0.58 1427.25 

8934143 Nangina Girls' High 
School 

Precipitation KMD 34.10 0.28 1196.22 

8934155 Amagoro D.O's Office Precipitation KMD 34.33 0.63 1224.80 

8934156 Nambale Agricultural  
Office 

Precipitation KMD 34.23 0.45 1233.54 

8934183 Nzoia Sugar Factory - 
Bungoma 

Precipitation KMD 34.65 0.57 1490.14 

8934191 Port Victoria Forest 
Station 

Precipitation KMD 34.02 0.15 1236.23 

8934030 Nangina Catholic 
Mission  

Precipitation WRA 34.10 0.28 1196.22 
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ID Station name Measured variable Source Longitude Latitude Elevation  

(DEM 90m) 

8934113 Kapsakwony Chief's 
Office  

Precipitation WRA 34.72 0.85 1938.56 

8934134 Bungoma Water 
Supply  

Precipitation WRA 34.57 0.58 1427.25 

8934161 Alupe Cotton Research 
Station  

Precipitation WRA 34.13 0.48 NA 

8934169 Kwangamor Precipitation WRA 34.33 0.53 1232.43 

8934173 Cheptais Chief's Office  Precipitation WRA 34.47 0.80 1588.14 

1AA01 Malaba river at border 
bridge 

Discharge WRA 34.27 0.64 NA 

1AB01 Malakisi river  Discharge WRA 34.52 0.84 NA 

1AD02 Malakisi river at Bgm-
Mlb bridge 

Discharge WRA 34.34 0.63 NA 

1AH01 Sio Discharge WRA 34.147 0.39 NA 

8934096 Kakamega 
Meteorological Station 

Min and max Temperature; 

 Pan Evaporation 

KMD 34.75 0.27 NA 

 

2.2.1 Data availability  

From the 25 rainfall stations, 19 have more than 30 years of recorded data and 22 have more 
than 20 years of data (further information in Table 2), but single years exhibit substantial data 
gaps. Therefore, stations with many gaps were excluded from the analysis. 
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Table 2. Time series available per station 

Station Start date 
data 

End date 
data 

Years with 
data 

Source 

8934161 01.01.1980 31.03.2017 37 KMD 

8934016 01.01.1980 03.12.2017 37 WRA 

CHIRPS_13 01.01.1981 31.12.2017 36 CHIRPS 

8934061 01.01.1980 03.05.2016 36 WRA 

8934096 01.01.1980 03.07.2016 36 WRA 

8934105 01.01.1980 03.05.2016 36 WRA 

8934116 01.01.1980 03.05.2016 36 WRA 

8934156 01.01.1980 03.05.2016 36 WRA 

8934037 01.01.1980 03.09.2015 35 WRA 

8934155 01.01.1980 03.09.2015 35 WRA 

8934030 01.01.1980 31.03.2014 34 KMD 

8934030 01.01.1980 03.02.2014 34 WRA 

8934183 01.04.1980 03.08.2014 34 WRA 

8933026 01.01.1980 03.07.2013 33 WRA 

8934134 01.01.1980 03.08.2012 32 WRA 

8934191 01.01.1984 03.05.2016 32 WRA 

8934078 01.01.1980 03.11.2011 31 WRA 

8934119 01.01.1980 03.12.2011 31 WRA 

8934098 01.01.1980 03.12.2010 30 WRA 

8934143 01.01.1984 03.09.2013 29 WRA 

8934060 01.01.1980 03.10.2003 23 WRA 

8934134 01.01.1980 15.07.2000 20 KMD 

8934113 02.01.1985 01.01.2002 17 KMD 

8934023 01.01.1980 03.03.1995 15 WRA 

8934169 01.01.2012 31.12.2017 5 KMD 

8934173 02.01.2001 01.01.2002 1 KMD 

In order to select which station should be used within the following procedures, a criterion of 
maximum 90% of missing values is defined. This means that rainfall stations with less than 
10% of values, will be exclude from any further calculations. One of the 25 stations (8934173) 
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was consequently dismissed from the study, due to the short series that it contains (2.6%). 
The percentage of data missing for each station is given in Table 3 . 

Table 3. percentage of precipitation data missing per station. Stations highlighted in blue was 
discarded 

Station / 
Data basis 

% Precip. data not 
available 

8934030 75.2% 

8934113 58.2% 

8934134 59.1% 

8934169 84.2% 

8934173 97.4% 

8934161 27.5% 

CHIRPS_13 2.6% 

8933026 73.7% 

8934016 19.1% 

8934023 63.8% 

8934030 58.1% 

8934037 54.2% 

8934060 39.3% 

Station / 
Data basis 

% Precip. data not 
available 

8934061 21.1% 

8934078 40.1% 

8934096 6.4% 

8934098 56.4% 

8934105 20.4% 

8934116 63.2% 

8934119 33.3% 

8934134 22.8% 

8934143 79.4% 

8934155 59.6% 

8934156 29.0% 

8934183 31.4% 

8934191 30.6% 

Besides that, out of all the precipitation stations, only 3 are located inside the study area, 
listed below, and 22 in the surroundings (See Figure 1).  

 8934116: Amukura Chief's Centre (10 days_KMD) - 1297.89 m.a.s.l. 

 8934156: Nambale Agricultural Office (10 days_KMD) - 1233.54 m.a.s.l. 

 8934169: Kwangamor (daily_WRA) - 1232.43 m.a.s.l. 
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3 Methods 

As the aim of this study is the estimation of design or extreme values for different return periods 
the methods involved must include a hydrological model that can enhance the data availability 
of discharge from the catchment. This hydrological model requires a substantial amount of 
rainfall data as an input. Reasons for data gaps and discontinuities in time series and 
measurements of the data include natural, human, equipment among other reasons.  

For all the stations it is necessary to fill the gaps within the period 1980-01-01 to 2017-12-
31.Since the rainfall stations contain 2 different measurement intervals, daily and 10 day sums, 
the data gap filling procedure has to take this into account. 

In regions where hydro-meteorological is scarce, or data is of low quality or high measurement 
uncertainty, hydrological models can be used to enhance information data base. A hydrological 
model is a simplification of the real system, which helps to understand the processes leading 
from rainfall to runoff and can help in the prediction and management, with its limitation, of the 
water resources. 

In order to set up a Hydrological model, long times series of precipitation (and temperature, 
potential evapotranspiration) are required for the calibration and validation. Since the data 
series obtained from all stations have data gaps, the first step is to fill these missing values. 
Once the time series is complete, it is necessary to determine how relevant each station is for 
the area of study. As is mentioned above, some stations are directly located within the sub-
basin analyzed; For estimating the areal precipitation of the catchment, the Thiessen polygons 
method is used. Due to the flatness of the area, a low variability in precipitation is expected, 
justifying the application of this simple method for areal interpolation. 

With the respective polygon enclosing each station, and its proportional relevance towards the 
total area, the areal precipitation values can be calculated and the be used as input for the 
hydrological model.  

Once the model is calibrated, the estimation of extreme valuescan be done. in the description 
of the hydrological model is given in chapter 3.4. 

It is important to keep in mind that hydrological phenomena have a high variability in space 
and time Therefore all the estimations done here cannot be considered as an absolute truth, 
but as a result of statistical analysis, influenced by several assumptions, evident errors in the 
measurements  and in summary large uncertainties. 

3.1 Temporal interpolation (Data filling) 

Missing data imputation is in some cases crucial to use the data available and not reject 
records than can be useful for the future analysis. Hydrological models and statistical analysis, 
such as the case involved here, rely on (long) time series, hence the quality and completeness 
of time series is essential and the preprocessing of raw data sets is therefore a necessary 
procedure (Gao et al. 2018).  

The collection of environmental data is normally subject to many unplanned incidents 
throughout time, that compromises the data gathering exercise. Meteorological or generally 
extreme events, equipment failure, human intervention, among others can hinder the data 
collection (Baguley 2012). 

Several techniques for data imputation exist, including:  

(i) Deletion, which means to drop or remove dataset with missing values from the 
analysis; could be explicit or implicit. The implicit method is more often used, with 
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it values are assigned in the missing values, for example NA or a value out of range 
(i.e. -999).  

(ii) Single imputation: (ii) Random substitution: missing value are imputed from a 
randomly selected similar record, i.e. Last Observation Carried Forward (or LOCF),  

(iii) Mean substitution: replacing any missing value with the mean of that variable for all 
other cases, and  

(iv) regression, in which available information for complete and incomplete cases is 
used to predict the value of a specific variable.  

Two methods that improve on single imputation are (vi) maximum likelihood and (vii) multiple 
imputation (MI). 

Mean substitution is not recommended, because this technique inflates the sample size and 
leads to standard errors that are too small In addition, covariances and variances are 
underestimated, which also leads to a bias when estimating σ² and σ (Baguley 2012). A more 
refined variation is to employ all the available data to estimate those missing values for 
instance via regression. The estimations are meant to substitute missing values. This method 
is known as conditional mean substitution or regression imputation. 

Regression can produce unbiased parameters for intercept and slope but since the estimated 
value will fall exactly in the regression line, less variables as they would have been with real 
values are considered. 

For this project a simple data filling procedure, based on linear regression models was chosen. 
The linear regression models are thereby estimated based on the highest correlation among 
stations with available data for the same month. With similar stations is meant not only about 
physical conditions but also temporary distribution, as it was previously referred, a group of 
stations have only daily data while the second group has the sums of 10 days. Therefore, it 
was in the first place compared all the daily data stations between each other, and separately 
the stations with 10-day data between them. 

A correlation matrix (see Table 4) relates, each time step with missing data (NAs) and for every 
station with all the stations that do have data at this time step and in the same month during 
the whole time series.  

Table 4. Correlation matrix for station X8934113, date 01-01-1980 

X8934113 CHIRPS_13 X8934161 X8934134 X8934030 X8934169 

1 0.268 0.098 -0.011 -0.015 NA 

Table 4 shows an example for a correlation matrix for a specific day (01.01.1980). The station 
X8934113 has for the month of January from all the daily records the highest correlation with 
station CHIRPS_13 for the given month. This means, that the gap in X8934113 will be filled 
with a linear regression model using the data from CHIRPS_13. The same principle is applied 
to every missing daily data. Once all the gaps in the daily stations are filled, the same technique 
is implemented for the other 19 stations with 10-day values. Once the datasets for 10-day is 
gap-free, a further step is applied to temporally disintegrate the 10-day sums to daily 
information. 

The daily stations were converted to 10-day data, which means that each third part of the 
month is aggregated, this must be done in order to have comparable data between the 2 
categories of the available data sets. Once the daily data is aggregated, a correlation analysis 
is implemented among all stations, to fill the gaps in every 10-day rainfall stations during the 
whole time series. 
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Each of the 10-day stations has been associated with the highest correlated daily station to fill 
the gaps, with it is calculated the proportion of rain among the 10 days, that were previously 
summed, so a disaggregation of 10-day data to daily data can be achieved based on the 
percentage of rain for each of the days, which is applied to the filled value obtained. Here, it is 
assumed that a pair of stations will have the exact same temporal distribution of rainfall, which 
could or could not reflect the real distribution of a rainfall event, therefore the results here 
presented cannot be assumed as a great truth. Now that the temporary imputation is 
concluded, the calculation of the areal values for the basin can be done. 

3.2 Spatial interpolation 

Rainfall observations are measured at single locations, which is usually not representative for 
the overall catchment. There are many methods to transform point values to areal estimates, 
with different results being obtained, event with the same network data, depending on the 
method applied (WMO 2008). To obtain the mean areal precipitation from gauge data, methods 
such as arithmetic average method, Thiessen polygon method and inverse distance-squared 
method or other interpolation methods exist. For the given case, due to the not very complex 
topographical conditions, the Thiessen polygon method is applied. 

The Thiessen polygon Method is widely used in engineering practice for the estimation of the 
spatial distribution of rainfall. This method assigns a weight to each gauge station in proportion 
to the catchment area that is closest to that gauge. The steps of the method is described by 
UTHH (2011) and is shown below: 

 Gauge network is plotted on a map of the catchment area of interest. 

 Adjacent stations are connected with lines. 

 Perpendicular bisectors of each line are constructed (perpendicular line at themidpoint 
of each line connecting two stations) 

 The bisectors are extended and used to form the polygon around each gauge station. 

 Rainfall value for each gauge station is multiplied by the area of each polygon. 

 All values from step 5 are summed and divided by total basin area. 

 

Figure 4. Construction of Thiessen polygon (UTHH 2011) 
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Although this method is widely used, its application has to be carefully implemented, because 
the proportionality takes into consideration only a 2-dimension surface, meaning that the z-
axis or elevation is neglected. In cases, where the topography shows no significant changes, 
as it is in this study, the method is appropriate. Otherwise, the isohyets method, can be 
employed since it takes into account topographical differences within the catchment area 
(Chavula 2013). 

With the weighted area, the average catchment precipitation is calculated with the equation:  

 

where 𝑃 is the weighted average, Pi’s are measurements, and Ai’s are areas of each polygon. 

Once an average precipitation is calculated, the input time series for a hydrological model is 
completed. 

 

 

3.3 Hydrological Modelling 

Modeling runoff contributes to understanding hydrologic phenomena and the effects involved 
in the hydrological cycle. Hydrological models are tools used by hydrologists and engineers to 
answer questions in different areas in water resources, ranging from resource management, 
to questions related to urban and rural hydrology and groundwater resource management. 
Many hydrological models have been developed and refined during the past four decades and 
it is required to fully understand their characteristics to effortlessly employ them (Jajarmizad et 
al. 2012). 

The classification of hydrological models is not an easy task since the nature of models is often 
similar and it is frequent to have models with similar characteristics. A classification introduced 
by Singh (1995) is shown in Figure 5. 
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Figure 5.  Classification of hydrological models proposed by Singh (1995). Source: (Saha 
and Zeleke 2015, p. 568). 

Conceptual rainfall-runoff models can estimate streamflow with minimum inputs. Several 
models exist. Anshuman et al. (2019) compiled some of them: “AWBM (Boughton 2004), 
IHACRES (Croke et al. 2006), Sacramento (Burnash 1973), SIMHYD (Chiew et al. 2002), 
SMARG (Goswami et al. 2002), GR4J (Perrin et al. 2003), and SURM (Delgado 2013)”. 

From all of them, GR4J has the simplest structure, allowing for a robust calibration process, 
as well as a package version in R, the programming language selected for this study.  

3.3.1  GR4J 

The GR4J model was initiated by Claude Michel in the earlies 80s at CEMAGREF, a public 
research institute in France. At the beginning, the model included one parameter, but the 
newest versions have up to 5 parameters. The GR4J modelling approach is mainly empirical 
(Michel et al., 2006). GR4J is a continuous lumped conceptual model, with a daily time 
step. It is also capable to include soil moisture in its calculations. 

The versions of the GR4J model are: (i) 3-parameter by Edijatno and Michel (1989) and 
Edijatno (1991); (ii) 4-parameter by Nascimento (1995) and Edijatno et al. (1999) ; (iii) 4-
parameter by Perrin et al. (2003) and (iv) 5-parameter by Le Moine (2008). 

The main characteristics of the models are (Perrin et al. 2007): 

- Process level: simple behavioral relationships at the basin scale, developed empirically 
and without direct links to the physics of small-scale processes and which can 
represent an average of several processes 

- Spatial approach: GR models are global, a watershed is consider as a whole, an 
heterogeneous body 

- Temporal approach: the GR models are develop for specific operating time steps: 
annual (GR1A), monthly (GR2M) and daily (GR4J). 

Conceptual models express runoff processes with simplification of the whole hydrological 
process: storage, flow input and output are used to represent an overall idea of the response 
of a given catchment. This representation is based on the water balance equation that converts 
rainfall into runoff, evapotranspiration and groundwater recharge, by calculating a distribution 
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of the input towards each component. The model simulates the exchange between 
atmosphere, storage and hydrological components based on this equation. Storage, both in 
soil and groundwater are idealized in models. The general governing equations is:  

𝑑𝑆

𝑑𝑡
= 𝑃 − 𝐸𝑇 − 𝑄𝑠 ± 𝐺𝑊 

where  

𝑑𝑆

𝑑𝑡
 is the change in storage, P is precipitation, ET is evapotranspiration,𝑄𝑠 is surface runoff and 

GW is groundwater. 

Lumped models refer to representations that simplifies a basin as a single homogeneous unit, 
this means, that the characteristics of the catchment are assigned as equal for the whole area. 
This type of models are meant to simulate a complete point discharge (runoff and streamflow) 
and it is not designed to give specific flows within the catchment. Lumped models are suitable 
for long-term purposes. (EPA 2017). The assumptions of the hydrological process considered 
inside the model, i.e. land use averaged changes within watershed, tend to under and 
overestimate runoff values, which leads to uncertainties that have to be kept on mind. 

“By assuming homogeneity over the catchment, lumped models lose spatial resolution of the 
data. For example, rainfall and runoff patterns vary over space and time, but in lumped models 
they are considered stationary. Due to the many assumptions and averaged conditions that 
lumped models incorporate, they do not represent large watersheds and catchments 
accurately (Moradkhani & Sorooshian, 2008)” (EPA 2017). 

 

3.3.1.1 Structure and processes 

The model described in Perrin et al. 2003 is represented schematically in the diagram of Figure 
6. For a given time step as input: rainfall depth (P) and potential evapotranspiration (E) are 
given. P is introduced as an estimation of the areal rainfall, reason why areal interpolation was 
done, and E can be based on monthly or daily data. Input, output and internal fluxes and states 
are expressed in mm. The model parameters displayed in Figure 6 are given in Table 5: 

Table 5. Model parameters. source: (eWater Source 4.1.0) 

Parameter Definition Unit 

E Potential areal evapotranspiration mm 

𝑬𝒏 Net evapotranspiration capacity mm 

𝑬𝒔 Actual evaporation rate mm 

𝑭(𝑿𝟐) Groundwater exchange term mm 

P Areal catchment rainfall mm 

Perc Percolation leakage mm 

𝑷𝒏 Net rainfall mm 

𝑷𝒓 
Total quantity of water to reach 

routing functions 
mm 

𝑷𝒏- 𝑷𝒔 
Amount of net rainfall that goes 
directly to the routing functions 

mm 

𝑷𝒔 
Amount of net rainfall that goes 
directly to the production store 

mm 

Q Total stream flow mm 

𝑸𝟏 Output of uh2  

𝑸𝟗 Output of uh1  

𝑸𝒅 Direct flow component  

𝑸𝒓 Routed flow component  
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R Water content in the routing store  

S Water content in the production store  

𝑼𝑯𝟏, 𝑼𝑯𝟐  Unit hydrographs  

𝑿𝟏  
Capacity of the production soil (sma) 

store 
(mm) 

𝑿𝟐  Water exchange coefficient (mm) 

𝑿𝟑  Capacity of the routing store (mm) 

𝑿𝟒  Time parameter for unit hydrographs (days) 

   

 

 

Figure 6. Schematic diagram of the GR4J model. Source: (eWater Source 4.1.0) 

Table 6 gives an overview regarding the equations in the hydrological model applied. 

Table 6. Equations involved. Source: (eWater Source 4.1.0) 

Explanation Equation 
Determination of net rainfall and 
PE 

If (P≥E) then :  𝑷𝒏 = 𝑃 − 𝐸 ; 𝐸𝒏 = 0. 
If (P<E) then :  𝑷𝒏 = 0 ; 𝐸𝒏 = 𝐸 − 𝑃. 

Eq. 1 
Eq. 2 

Production store: includes soil 
moisture. 

𝑷𝑠 =

𝑥1 ∗ (1 − (
𝑆
𝑥1

)
2

) ∗ tanh (
𝑃𝑛
𝑥1

)

1 +
𝑠

𝑥1
∗ tanh (

𝑃𝑛
𝑥1

)
 

Eq. 3 
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Explanation Equation 

𝐸𝑠 =
𝑆 ∗ (2 −

𝑆
𝑥1

) ∗ tanh (
𝐸𝑛
𝑥1

)

1 + (1 −
𝑠

𝑥1
) ∗ tanh (

𝐸𝑛
𝑥1

)
 

Eq. 4 

Update  water content in the 
production store 
*Note: S can never exceed x1 

𝑆 = 𝑆 − 𝐸𝑆 + 𝑷𝑠 Eq. 5 

percolation leakage from the 
production store 𝑃𝑒𝑟𝑐 = 𝑆 { 1 − [1 + (

4

9

𝑠

𝑥1
)

2

]

−1/4

} 
Eq.6 

 𝑆 = 𝑆 − 𝑃𝑒𝑟𝑐 Eq. 7 
Linear routing with unit 
hydrographs 

𝑷𝑟 =  𝑃𝑒𝑟𝑐 +  (𝑷𝑛 − 𝑷𝑠) 
Eq.8 

The ordinates of both unit 
hydrographs are derived from 
the corresponding S-curves 

along time 
 

SH1 

For t≤0 SH1 (t)=0 Eq. 9 

For 0<t<x4 
SH1(t) = 

t

x4

5/2
 

Eq.10 

For t ≥x4 SH1(t)=1 Eq.11 

SH2 

For t≤0 SH2 (t)=0 Eq.12 

For 0<t<x4 
SH2(t) =0.5 

t

x4

5/2
 

Eq.13 

For x4 t <2 ∗ x4 SH2(t)=1 – ½ (2 −
t

x4
)5/2 

Eq. 
14 

For t ≥ 2 ∗ x4 SH2(t)=1 Eq. 
15 

UH1 and UH2 ordinates are: UH1(j)=SH1(j)-SH1(j-1)  
UH2(j)=SH(j)-SH2(j-1)  

At each time-step, two unit 
hydrographs correspond are 

given by: 

𝑄9(𝑘) = 0.9 ∑ 𝑈𝐻1(𝑗) ∗ 𝑃𝑟(𝑘 − 𝑗 + 1)

l

j=1

 

l = int(x4) + 1 

 

𝑄1(𝑘) = 0.1 ∑ 𝑈𝐻2(𝑗) ∗ 𝑃𝑟(𝑘 − 𝑗 + 1)

m

j=1

 

m = int(2 ∗ x4) + 1 

 

Inter catchment groundwater 
exchange 
 
*Note: F cannot be larger than x2 

F =  x2 (
R

x3
)7/2 

R: level in routing storage, 
X3: reference capacity 
X2: water exchange coefficient (positive in case 
of import, negative in case of export or 0 for 
no-exchange) 

 

Non linear routing store 
R = max(0;  R + Q9 + F) 

 

 

The outflow of the reservoir is: Qr =  R{1 − [1 + (
R

x3
)4]−1/4} 

 

The level in the reservoir is: R = R −  Qr  

Total stream flow: 
 

Qd =  max(0;  Q1 + F) 

Q =  Qr + Qd 
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3.3.1.2 Model parameters and calibration 

GR4J includes 4 parameters, which were calibrated in this study. x1, x2, x3, x4,correspond to 
different parameters that affect the ouput of the model. GR4J includes these parameters with 
a default value and a range. The range can be modified by the user in the calibration procedure.  

Table 7. Parameters in GR4J and their default values. Source: (eWater Source 4.1.0) 

Coef Description Unit Default Range 

x1 production store capacity mm 350 1-5000 

x2 intercatchment exchange coefficient mm/d 0 -10.0 – 5.0 

x3 routing store capacity mm 40 1-500 

x4 unadjusted unit hydrograph time constant days 0.5 0.5 - 0.4 

These values are initially chosen by the user but the best fit for the model is optimised during 
the process of calibration. One approach to define the first set of parameters is assigning 
values within a confidence interval, for example Perrin et al. (2003), defined a range of 80% 
confidence for the four parameters (Table 8). These ranges are also used to restrict the values 
of the parameters during the calibration, in order to get satisfactory and furthermore, realistic 
parameters. 

Table 8. Coefficient values with a 80% of confidence (Perrin et al. 2003) 

Coef Unit Median value 80% Confidence interval 

x1 mm 350 100 - 1200 

x2 mm 0 -5 – 3 

x3 mm 90 20 – 300 

x4 days 1.7 1.1 – 2.9 

The initial parameters should be set within the range mentioned to avoid discrepancies at the 
beginning of the simulation periods. In addition to that, a warm up period is set at the beginning 
of each simulation, at least one year is recommended. 

Once the model runs, the output data obtained are: production store (Prod), net rainfall (Pn), 
Production store (Ps), Actual evapotranspiration (AE),Percolation (Perc), Linear routing with 
unit hydrographs (PR), unit hydrographs (Q9, Q1), Nonlinear routing store (Rout), Exchange 
capacity Exch, outflow of the reservoir (QR), Inter catchment groundwater exchange (QD), 
Total stream flow Qsim. 

The first attempt is here calculated with user-defined parameters, to show the effects of 
wrongly selected parameters, the results might not be the closest to the true values. Therefore, 
a parameter calibration process is necessary. In this process, the model parameters (x1 to x4) 
are automatically changed and the corresponding simulated discharge is compared to the 
observed values, using an objective function.. 

For this study, the NSE (Nash and Sutcliffe 1970) and KGE (Gupta et al. 2009) are used as 
measures to estimate model performance. Both equations are included in the R package of 
GR4J as efficiency criteria. Based on each proposed formula, all 4 parameter are iteratively 
adapted in order to find an optimal value, in combination with the other 3, results in a high 
objective function value. 

The NSE criterion is defined with the equation (Nash and Sutcliffe 1970):  

𝑵𝑺𝑬 = 𝟏 −
∑ (𝑸𝒎

𝒕 − 𝑸𝒐
𝒕 )𝟐𝑻

𝒕=𝟏

∑ (𝑸𝒐
𝒕 − 𝑸𝒐

̅̅ ̅̅ )𝟐𝑻
𝒕=𝟏

 

where Qo is the mean of observed discharges, 
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𝑄𝑚
𝑡 is the modeled discharge, 

𝑄𝑜
𝑡 is the observed discharge at time t. 

The range of the criterion goes from −∞ to 1. A value of NSE = 1, means a perfectly fitted model 
in comparison to observed data. It is also possible to obtain a NSE < 0, which means that the 
observed mean is a better predictor than the model. A model can be qualified as “good quality” with 
a NSE value between 0.5 and 0.65 (Ritter and Muñoz-Carpena 2013) 

The KGE criterion proposed by Gupta et al. (2009) is defined as 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (∝ −1)2 + (𝛽 − 1)2 

𝑟 =  𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑛𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 

∝ =
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
 

𝛽 =
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
 

 

Comparable to the NSE, KGE = 1 indicates perfect agreement between simulations and 
observations. KGE <0 indicates that the mean of observations provides better estimates than 
simulations  

In this study, optimization of parameters is performed using the NSE and the KGE. 

3.4 Estimation of Extreme values 

Extreme value analysis consists of studying events with low probability of occurrence. They 
refer to the values found in the tails of a probability distribution function, as shown in Figure 7. 
An extreme value can be either a maximum or a minimum, and it represents rare or extreme 
event such as a natural hazard in environmental sciences. 

The main aim of an extreme value analysis is to predict the probability of rare events which 
have a very low probability, and which may not have been recorded. In other words, it intends 
to relate the magnitude of an event with its probability of happening. The underlying 
assumption is that the observed values (=sample) follow a defined distribution function. Given 
this distribution function, it is possible to estimate the extreme values as a function of 
probability. 
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Figure 7. Extreme values in a normal distribution function (Glen 2016) 

 

3.4.1 Generalized Extreme Value (GEV) distribution 
In extreme value analysis, an extreme value distribution (EVD) function is fitted to the values 
of the either higher or lower tails of a normal distribution function. As shown in Figure 88 , there 
are three types of extreme value distribution functions used in the GEV (Haan 1977):  

 Gumbel Distribution 

 Fréchet Distribution 

 Weibull Distribution 

All these distributions are similar and can be used to fit a data set of rare events, as long as 
the variables are random, independent and identically distributed (Gumbel 2013). The 
Generalized Extreme Value (GEV) distribution function, is a function that merges the three 
types of extreme value distributions in one equation. 

 

 

 

The parameters of the GEV distribution are: 

µ : Location parameter 

σ : Scale parameter 

ξ: Shape parameter 

Depending on the sign of the shape parameter (ξ), the GEV assumes one of the three 
extreme value distribution function types.  

If ξ < 0, then the GEV is equal to the Weibull distribution function (Type III).  

If ξ > 0, then the GEV is equal to the Fréchet distribution function (Type II).  

If ξ = 0, then the GEV is equal to the Gumbel distribution function (Type I). 
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Figure 8. Extreme value distribution functions (Gilleland and Katz 2016) 

 

3.4.2 Parameter estimation 
The parameter values of the GEV distribution function are estimated based on observed 
values. In this case study, two estimators are used: the maximum likelihood estimation (MLE) 
and the L-moments estimation. ( (Gilleland and Katz 2016)) 

 

3.4.2.1 L-moments  
The method of L-moments was first introduced by Hosking (1990). It is a good estimating 
method because it is robust regarding outliers and results in good parameter values for small 
samples. Moreover, it is a clear method and easy to interpret (BMLFUW 2011). 

The rth L-moment of a distribution of the X variable is defined as: 

 

 

the first four L-moments λ1, λ2, λ3 and λ4 are used to assess the location, the spread, the loop 
and the curvature of the distribution function. 

 

3.4.2.2 Maximum Likelihood  
The maximum likelihood estimation (MLE) method is based on the idea that, for an assumed 
distribution function, the chosen parameters must be those that most likely reflect the assumed 
distribution. From a theoretical point of view, the MLE has numerous favorable properties, but 
the errors with shorter time series (<500 values) are significantly higher than with other 
estimation methods. (BMLFUW 2011) 

In the MLE, the parameter determination is transformed to an optimization function where the 
target function L is the following: 

L(u1,…,um) = f(x1, u1,…,um) * f(x2, u1,…,um) * ... * f(xn, u1,…,um) 

u1,…,um :   the m parameters of the distribution function to be determined. 
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f(x1, u1,…,um) :   value of the distribution function for the observation value x of n 
values. 

For a result that is as accurate as possible, the parameters must be selected so that L(u1,…,um) 
becomes maximum.  

 

3.4.3 Extreme value data set selection 
The extreme value distribution (EVD) function is fitted to the extreme values, meaning either 
the maximum or the minimum values of the data set, as shown in Figure 7. There are two 
approaches to determine the extreme values that are used for the extreme value analysis,  

i. the block maxima approach and  
ii. the peaks over threshold approach.  

The first approach takes the maxima of a long data block, for instance, the annual maximum 
values. The dataset is considerably reduced with this approach; therefore, it is useful for long 
time series. However, it is important to point out that it could happen that in one year there are 
two extreme events, and only the greater one would be selected for the extreme values 
analysis (Gilleland and Katz 2016) 

The second approach consists in analyzing the data that exceeds a given threshold. This 
approach is favorable for shorter time series, as the threshold can be set up at any level. This 
method has some drawbacks, as a same event can last more than one day, exceeding the 
threshold a couple of times in a row, and it would be overrepresented. In this case, only the 
highest value of each event should be selected to guarantee independence. This can be done 
through declustering, where only the single highest value is retained (Gilleland and Katz 2016).  

For this case study, the block maxima approach was chosen. The annual maximum streamflow 
was calculated for each year with recordings, and this was used to fit a GEV distribution 
function with the R package extRemes (Gilleland and Katz 2016). 

3.4.4 Return period and return level 
Once an extreme value distribution function has been defined and fitted with existing data, in 
this case, the maximum annual streamflow, the probability of occurrence of an event of any 
magnitude can be extracted, with a confidence interval. The concepts of return level and return 
period are used to describe the magnitude and probability of an event happening, and are 
depicted in Figure 9. 

The return level is represented by x(p) and refers to the magnitude of an event that has a p 
probability of being exceeded (Gilleland and Katz 2016). 



 

 Page 25 

 

The return period is represented by T, and it refers to the average waiting time until an event 
of a similar magnitude happens again. This means that an event of a given magnitude will 
happen in average every T-years (Gilleland and Katz 2016). 

Figure 9. Return period and return level representation (Gilleland and Katz 2016). 

The return period is defined as the inverse of the probability of exceedance of an event, so T 
= 1/p. For example, an event with a 1% probability of exceedance p = 0.01, will have a return 
period T = 1/p = 100 years. 

In order to provide an estimate of the intensity of an event, a flood frequency curve is often 
used, where discharge is plotted against its corresponding return period, as shown in         
Figure 10. In the graph, the points are the measured points, the straight line corresponds to 
the model fit to the measurements, and the discontinuous lines depict the 90% confidence 
interval. 
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Figure 10. Partial series for the Styx River at Jeogla showing model fit and the 90% 
confidence interval(Institution of Engineers 1987). 
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4 Results 

In this chapter the results obtained with the input data, described in Chapter 2.2, and with the 

methodology defined in Chapter 0 are displayed. It includes also the discussion of the analysis 

done after each procedure and ties it with the study area background. The tables and graphs 

included are analyzed with three different scopes: (i) temporal analysis for every station, (ii) 

temporal and spatial analysis in the whole catchment and (iii) extreme value estimation. 

4.1 Temporal interpolation (Data filling) 

4.1.1 Precipitation 

Tables with long-term annual and monthly values for each station are presented here, the 
results obtained are show hereunder.
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Table 9. Mean monthly values for each station after data imputation (mm/d) 

Month X8934030 X8934113 X8934134 X8934169 X8934161 CHIRPS_13 X.8933026 X.8934016 X.8934023 X.8934030 

1 0.87 0.76 1.37 3.02 1.78 1.92 1.25 1.08 1.63 0.99 

2 1.26 0.77 1.83 2.45 1.41 2.60 2.15 1.44 1.31 1.62 

3 2.96 1.68 3.41 2.63 3.75 4.94 3.19 3.06 3.09 3.25 

4 4.04 4.17 6.33 2.69 5.93 8.77 4.94 6.31 5.95 6.29 

5 3.81 2.77 6.48 3.86 4.88 8.04 3.36 5.69 4.39 4.95 

6 1.34 2.34 2.72 2.95 2.24 4.71 1.90 4.13 2.71 2.14 

7 1.16 1.54 2.21 1.39 1.93 3.96 1.37 4.32 2.75 1.44 

8 2.03 1.99 2.01 2.34 2.84 4.61 0.94 6.01 2.22 4.71 

9 1.91 2.81 3.95 2.36 3.88 4.83 1.30 4.86 3.48 5.06 

10 2.85 2.82 3.73 1.41 4.34 5.87 2.45 3.86 3.91 5.41 

11 3.04 2.76 2.99 1.99 3.74 5.32 1.77 3.00 2.62 3.55 

12 2.15 1.13 1.83 1.49 1.87 2.93 1.28 1.58 1.60 2.44 

 

Month X.8934060 X.8934061 X.8934078 X.8934096 X.8934098 X.8934105 X.8934116 X.8934119 X.8934134 X.8934143 

1 1.90 2.00 2.89 2.43 1.57 1.81 1.76 2.19 1.54 0.80 

2 1.82 2.37 3.77 3.21 2.35 1.90 1.53 2.45 1.99 1.08 

3 3.72 4.39 4.55 6.61 4.09 4.14 5.09 3.85 3.94 4.01 

4 5.62 9.18 8.36 8.75 6.03 8.57 7.85 8.10 7.18 7.25 

5 7.66 8.07 8.86 8.24 8.00 7.37 8.04 8.33 6.97 4.97 

6 4.73 6.91 5.48 5.64 2.91 2.96 2.29 4.85 3.02 2.45 

7 2.45 5.58 5.51 5.98 3.09 2.49 3.02 4.30 2.94 1.78 

8 3.16 8.54 8.36 7.10 3.24 3.42 3.15 4.95 3.37 3.73 

9 4.22 6.16 7.35 5.96 4.24 4.84 3.41 4.97 4.26 3.55 

10 5.47 5.72 5.21 5.18 5.10 4.99 4.93 4.75 4.84 4.49 

11 4.84 4.37 2.69 6.74 5.05 5.52 3.91 4.74 3.78 3.45 

12 2.29 2.52 2.11 4.16 1.30 2.76 1.90 1.82 1.89 1.02 
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Month X.8934155 X.8934156 X.8934183 X.8934191 

1 2.07 2.31 1.71 1.65 

2 2.98 2.27 1.99 1.34 

3 4.65 4.74 4.44 3.05 

4 6.26 9.47 8.08 4.29 

5 7.48 8.79 8.07 3.34 

6 3.79 3.67 5.25 1.25 

7 2.92 3.36 4.00 1.07 

8 2.87 3.52 4.49 1.41 

9 3.72 4.73 5.43 1.80 

10 4.68 6.09 5.73 2.27 

11 5.57 5.19 5.48 3.06 

12 1.94 3.04 2.23 1.78 
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Figure 11. Mean monthly precipitation 
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Table 10. Mean annual values (mm/d) for each station after data imputation 

Year X8934030 X8934113 X8934134 X8934169 X8934161 CHIRPS_13 X.8933026 X.8934016 X.8934023 X.8934030 X.8934037 

1980 2.93 0.91 3.65 0.92 3.63 1.11 2.49 3.42 3.61 2.93 3.09 

1981 2.61 1.21 4.67 1.70 4.05 4.78 2.68 4.62 3.70 2.65 3.55 

1982 1.91 1.53 4.94 2.18 5.63 5.32 2.58 4.58 5.02 3.12 3.54 

1983 1.59 1.29 4.22 1.85 4.71 4.42 2.37 4.51 4.59 2.64 2.49 

1984 0.66 1.14 3.96 1.19 4.53 3.94 2.92 3.51 3.77 1.93 2.28 

1985 3.65 0.63 5.06 2.08 6.31 4.78 2.43 4.33 4.93 3.65 3.98 

1986 3.53 3.50 3.54 1.77 5.90 4.37 3.32 2.86 4.06 3.53 3.14 

1987 3.80 3.61 4.48 1.84 5.08 4.65 2.64 4.34 4.10 3.80 3.75 

1988 2.43 3.77 4.57 2.52 6.20 5.93 3.41 5.01 4.42 4.03 4.62 

1989 1.97 3.82 2.30 1.86 1.71 4.58 1.58 4.38 3.39 3.00 3.48 

1990 2.20 4.38 2.29 2.17 1.91 5.04 2.30 3.95 0.66 3.80 3.84 

1991 2.10 3.52 2.23 2.17 2.03 5.15 2.67 4.13 0.33 3.55 4.17 

1992 1.83 2.06 1.68 1.88 1.44 4.62 1.46 3.53 1.02 2.86 4.63 

1993 1.41 1.03 2.11 1.82 0.68 4.11 1.44 3.32 2.62 2.14 3.94 

1994 1.63 2.70 3.05 1.93 1.86 5.17 1.58 3.41 5.33 4.08 6.64 

1995 1.26 4.99 2.68 1.83 0.13 5.21 1.54 3.07 2.45 3.05 4.86 

1996 1.72 4.07 5.76 2.26 4.22 5.26 2.54 2.05 4.30 3.42 4.84 

1997 2.07 4.94 5.07 1.94 2.03 4.92 2.04 2.45 3.65 3.02 5.10 

1998 2.11 2.94 5.65 2.23 1.89 5.02 2.08 3.95 3.97 3.32 4.85 

1999 2.27 3.79 5.54 2.06 2.21 5.06 2.43 3.15 4.31 3.29 5.26 

2000 1.62 0.22 2.11 1.60 1.09 4.09 1.44 3.29 1.63 2.63 2.51 

2001 1.98 0.14 1.39 2.25 1.62 5.20 1.37 3.37 1.30 3.00 3.47 

2002 2.25 1.68 2.76 2.10 4.58 5.31 2.12 3.30 2.90 3.18 3.73 

2003 1.96 1.49 2.52 2.18 4.86 4.98 2.00 3.42 2.60 2.20 3.46 

2004 1.78 1.57 2.29 2.01 4.92 4.26 1.82 3.32 2.48 2.29 3.01 

2005 1.77 1.29 2.18 1.92 3.98 4.19 1.68 3.16 2.22 3.19 2.98 

2006 2.75 1.97 3.19 2.75 5.53 6.43 2.44 4.54 2.94 4.28 4.67 

2007 1.97 1.41 2.55 2.26 3.21 5.29 1.81 3.47 2.61 2.25 3.55 
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Year X8934030 X8934113 X8934134 X8934169 X8934161 CHIRPS_13 X.8933026 X.8934016 X.8934023 X.8934030 X.8934037 

2008 1.78 1.22 2.39 1.86 3.23 4.85 1.76 3.03 2.07 5.14 3.23 

2009 1.68 1.25 2.35 1.57 0.00 4.75 1.49 4.07 1.86 4.72 3.33 

2010 1.64 1.38 2.82 2.07 0.13 5.57 1.84 5.38 2.06 4.78 3.86 

2011 4.14 1.49 2.65 1.93 4.86 5.52 2.59 5.06 2.70 4.99 4.57 

2012 5.31 1.75 2.96 4.93 4.51 5.89 2.50 4.30 3.13 6.98 3.99 

2013 4.27 1.56 2.61 4.75 4.66 4.95 2.56 4.41 2.73 4.46 5.31 

2014 2.14 1.50 2.65 3.60 3.89 5.41 2.26 4.04 2.56 3.21 3.80 

2015 2.76 2.14 3.21 5.88 2.84 5.75 2.15 4.11 2.97 4.76 4.75 

2016 1.61 1.06 2.12 4.42 0.64 4.28 1.59 3.16 1.55 2.51 4.31 

2017 1.94 1.97 2.98 4.20 1.70 5.36 1.90 3.99 2.56 4.38 4.42 

 

Year X.8934060 X.8934061 X.8934078 X.8934096 X.8934098 X.8934105 X.8934116 X.8934119 X.8934134 X.8934143 X.8934155 

1980 3.85 4.65 4.16 4.38 3.38 3.01 3.28 3.56 3.65 1.77 2.83 

1981 3.71 6.11 6.10 9.53 4.56 4.07 4.66 3.37 4.70 2.82 4.71 

1982 4.58 8.68 5.11 6.15 4.68 5.02 4.37 4.76 4.90 2.99 3.97 

1983 4.56 7.13 5.18 5.26 4.40 4.65 3.60 4.20 4.22 2.67 3.75 

1984 3.83 4.32 3.46 4.48 3.30 4.41 3.67 3.81 3.96 3.07 3.37 

1985 3.86 5.85 3.28 6.05 3.93 3.35 4.65 5.60 5.09 3.62 3.92 

1986 3.38 4.54 4.05 4.89 3.91 3.01 4.10 3.95 3.51 3.21 3.47 

1987 3.99 5.90 4.41 5.49 4.17 4.68 4.24 5.21 4.48 3.76 3.92 

1988 4.17 8.12 5.27 7.13 4.54 4.77 4.98 4.31 4.43 3.77 4.39 

1989 3.76 4.71 4.98 5.47 4.86 4.56 3.49 4.98 3.50 2.65 3.75 

1990 3.68 5.30 5.61 5.50 4.58 4.46 3.29 3.99 4.16 4.58 3.15 

1991 4.15 4.57 4.35 5.81 4.47 4.10 4.90 4.00 2.80 3.67 4.27 

1992 3.58 4.67 5.54 4.79 4.85 3.99 4.34 4.08 2.51 3.38 3.56 

1993 3.87 4.13 4.66 4.11 4.40 3.29 3.05 3.97 2.76 2.34 3.20 

1994 4.59 6.46 6.50 5.35 5.91 4.88 4.05 5.55 3.00 2.71 4.42 

1995 4.82 5.45 2.85 5.50 4.59 4.27 3.69 5.69 2.85 3.30 3.81 

1996 5.00 4.76 4.21 5.73 3.91 4.56 4.79 4.18 5.82 3.08 4.10 
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Year X.8934060 X.8934061 X.8934078 X.8934096 X.8934098 X.8934105 X.8934116 X.8934119 X.8934134 X.8934143 X.8934155 

1997 4.79 4.90 7.22 4.44 4.04 3.64 4.13 3.67 5.07 2.74 3.58 

1998 3.94 5.09 6.23 5.24 4.83 3.75 4.42 3.88 5.54 3.36 3.75 

1999 5.17 5.67 5.68 4.79 4.78 3.37 4.43 3.56 5.55 3.62 3.78 

2000 4.21 4.46 3.48 3.86 2.14 2.56 3.09 4.38 2.95 2.22 2.90 

2001 4.53 5.45 4.58 5.62 2.39 2.77 3.03 5.05 2.42 2.83 3.79 

2002 3.72 5.18 5.71 5.88 3.44 5.18 3.56 4.54 2.69 3.21 4.09 

2003 3.20 5.60 7.10 5.78 3.25 5.87 4.00 4.19 4.03 2.96 3.75 

2004 2.70 4.70 4.52 4.44 2.86 4.59 3.02 3.90 3.15 2.74 3.27 

2005 2.67 4.95 4.47 4.72 3.05 3.93 3.09 3.58 2.27 2.80 3.26 

2006 4.37 6.47 6.04 7.01 4.51 5.71 4.07 5.51 3.72 4.01 4.97 

2007 3.14 5.45 6.24 5.53 3.48 4.94 3.73 5.27 4.14 3.21 3.72 

2008 2.93 5.26 5.07 5.40 2.94 5.29 3.39 4.70 4.87 2.87 3.82 

2009 2.95 5.03 4.43 4.96 2.81 5.05 3.08 4.23 4.13 2.75 3.35 

2010 3.56 6.52 5.62 5.96 3.46 3.67 3.76 5.12 5.58 3.16 4.06 

2011 3.60 5.46 6.30 5.51 3.45 5.70 4.72 4.91 4.62 3.90 4.23 

2012 5.06 5.06 8.35 6.14 4.77 3.76 3.58 6.86 3.77 5.92 5.44 

2013 5.10 5.63 7.56 12.52 4.40 4.14 4.84 6.43 2.70 3.55 6.63 

2014 3.83 5.98 4.99 10.14 3.23 4.12 3.89 4.84 2.76 3.49 5.41 

2015 4.32 5.86 10.38 6.10 2.95 5.16 5.40 5.07 3.35 3.22 6.15 

2016 4.06 5.02 6.11 5.35 2.97 2.99 2.65 4.88 2.22 2.20 5.39 

2017 4.63 5.68 6.67 7.05 4.75 3.68 3.94 5.49 3.08 4.22 5.04 
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Year X.8934156 X.8934183 X.8934191 

1980 4.10 3.69 0.58 

1981 4.22 4.47 1.96 

1982 7.09 5.75 2.26 

1983 6.07 5.01 1.77 

1984 6.16 4.64 2.29 

1985 5.87 5.86 2.36 

1986 5.23 4.24 2.36 

1987 5.64 4.47 1.75 

1988 5.75 4.78 2.23 

1989 3.77 4.11 1.84 

1990 4.47 4.78 2.37 

1991 3.95 4.35 2.35 

1992 3.99 4.60 1.63 

1993 3.70 4.82 1.90 

1994 4.42 4.88 2.16 

1995 3.77 5.18 2.16 

1996 4.69 5.07 2.37 

1997 4.93 4.65 2.48 

1998 4.58 4.99 2.70 

Year X.8934156 X.8934183 X.8934191 

1999 5.91 4.70 2.24 

2000 2.94 3.38 1.86 

2001 3.33 5.19 1.92 

2002 5.65 4.82 2.43 

2003 4.96 4.47 1.90 

2004 4.06 4.30 1.40 

2005 3.56 3.95 1.68 

2006 5.31 6.04 2.85 

2007 6.92 5.61 1.46 

2008 5.62 4.82 2.83 

2009 5.11 4.65 2.42 

2010 4.86 5.06 3.00 

2011 4.84 5.79 3.33 

2012 4.67 4.64 2.35 

2013 5.05 4.96 2.61 

2014 4.54 4.58 2.34 

2015 4.86 5.02 3.14 

2016 2.84 3.58 1.92 

2017 3.97 4.51 2.23 
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Figure 12. Mean annual precipitation f 
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Table 11. Annual precipitation sums for each station after data imputation (mm/a) 

Year X8934030 X8934113 X8934134 X8934169 X8934161 CHIRPS_13 X.8933026 X.8934016 X.8934023 X.8934030 X.8934037 

1980 1074.10 333.75 1337.10 335.07 1328.50 404.45 909.80 1250.76 1322.90 1074.10 1130.77 

1981 954.00 440.41 1703.30 619.81 1477.80 1743.26 977.70 1686.60 1350.80 966.23 1296.82 

1982 697.47 559.51 1801.80 794.65 2053.60 1942.51 940.60 1671.30 1833.42 1138.00 1291.70 

1983 581.11 469.87 1539.10 674.92 1720.20 1614.06 863.30 1644.70 1674.06 963.76 908.63 

1984 242.37 417.42 1449.40 435.19 1659.20 1442.05 1069.50 1283.80 1379.90 704.79 834.10 

1985 1331.30 231.10 1845.30 758.46 2301.60 1743.30 887.70 1579.70 1800.50 1332.60 1453.21 

1986 1288.80 1276.50 1293.70 646.28 2154.80 1596.46 1212.17 1045.30 1480.50 1287.50 1145.40 

1987 1386.70 1319.30 1633.70 671.05 1853.90 1697.50 964.92 1585.60 1494.90 1386.70 1368.00 

1988 889.53 1379.00 1674.10 921.45 2270.80 2171.17 1248.47 1833.50 1616.80 1474.93 1691.05 

1989 719.80 1393.00 839.00 679.61 622.34 1670.88 576.12 1599.70 1237.20 1096.35 1270.50 

1990 803.62 1598.80 834.35 791.88 697.79 1839.50 839.33 1440.54 240.91 1385.32 1402.40 

1991 767.82 1283.50 815.61 790.34 739.93 1878.66 972.75 1509.10 118.90 1295.90 1520.30 

1992 669.09 753.40 616.29 688.97 526.73 1692.05 536.02 1290.60 374.17 1044.97 1693.18 

1993 512.97 375.52 770.55 663.49 248.80 1501.48 525.75 1212.80 957.57 781.89 1439.02 

1994 595.69 987.00 1112.50 702.72 679.90 1885.30 577.01 1244.00 1944.90 1487.90 2423.00 

1995 460.88 1820.30 976.50 667.36 45.90 1902.79 562.80 1119.00 893.84 1113.89 1774.98 

1996 628.31 1488.10 2108.20 825.37 1543.59 1926.26 927.90 750.10 1574.80 1251.76 1772.90 

1997 757.26 1802.80 1850.50 708.14 742.12 1794.62 746.07 892.80 1331.29 1103.80 1860.93 

1998 770.37 1072.90 2061.80 813.27 688.34 1833.63 760.38 1441.61 1449.46 1213.29 1769.55 

1999 828.03 1381.70 2020.40 752.58 805.38 1847.33 886.18 1149.50 1574.73 1199.98 1919.13 

2000 591.69 80.10 771.78 584.12 400.06 1495.53 526.75 1205.10 596.46 962.11 919.07 

2001 722.39 52.35 508.27 819.74 591.49 1898.56 500.75 1231.04 475.31 1094.52 1265.11 

2002 821.27 612.73 1008.78 767.55 1672.92 1938.27 772.40 1205.10 1058.88 1160.42 1360.57 

2003 715.49 544.72 918.95 794.65 1774.10 1815.88 728.83 1248.10 947.35 804.28 1262.79 

2004 649.73 573.44 838.74 735.73 1798.90 1557.54 665.75 1214.98 909.42 839.89 1100.75 

2005 645.13 470.86 795.01 702.24 1453.70 1529.14 612.75 1152.83 810.83 1164.43 1087.17 

2006 1004.33 720.37 1165.86 1002.87 2017.30 2346.01 888.89 1655.87 1074.13 1561.42 1705.44 
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Year X8934030 X8934113 X8934134 X8934169 X8934161 CHIRPS_13 X.8933026 X.8934016 X.8934023 X.8934030 X.8934037 

2007 719.43 516.33 929.60 825.49 1171.60 1929.63 659.09 1267.00 950.95 822.90 1296.27 

2008 651.68 447.10 873.21 680.95 1182.40 1776.08 643.51 1108.00 759.34 1879.60 1180.61 

2009 613.16 457.97 858.78 573.39 0.00 1732.98 544.34 1485.66 679.81 1721.00 1216.34 

2010 600.26 505.46 1030.32 757.24 46.90 2033.27 671.98 1965.50 753.51 1744.37 1408.92 

2011 1510.80 543.05 965.70 704.56 1772.60 2013.96 945.46 1846.53 985.26 1822.65 1668.46 

2012 1942.50 638.93 1084.06 1803.90 1652.10 2157.00 914.48 1572.22 1146.83 2556.38 1458.74 

2013 1557.50 567.72 950.93 1734.90 1700.40 1807.24 934.80 1608.00 997.27 1628.11 1937.87 

2014 780.17 548.35 967.59 1312.70 1418.30 1973.08 826.02 1473.52 935.67 1173.30 1385.62 

2015 1008.79 779.91 1171.99 2144.70 1035.30 2098.25 785.81 1501.46 1085.37 1737.38 1732.90 

2016 589.84 387.57 774.57 1615.90 233.30 1567.23 581.05 1158.36 568.83 920.12 1579.11 

2017 708.88 719.49 1086.20 1532.80 619.88 1957.16 692.07 1455.17 933.54 1600.32 1614.07 

 

Year X.8934060 X.8934061 X.8934078 X.8934096 X.8934098 X.8934105 X.8934116 X.8934119 X.8934134 X.8934143 X.8934155 

1980 1410.10 1700.60 1521.50 1602.60 1238.62 1101.37 1200.32 1304.60 1336.40 648.95 1034.75 

1981 1353.40 2231.40 2227.00 3477.70 1664.90 1486.62 1701.22 1229.70 1715.90 1030.46 1720.90 

1982 1673.50 3167.30 1866.70 2244.80 1707.00 1832.38 1595.72 1737.40 1789.20 1092.88 1449.60 

1983 1666.20 2603.00 1891.60 1920.50 1604.20 1698.10 1313.24 1531.63 1539.60 976.08 1369.60 

1984 1401.00 1579.60 1268.14 1637.90 1206.80 1614.40 1343.00 1395.30 1448.90 1124.10 1233.70 

1985 1410.00 2135.50 1197.20 2210.00 1433.80 1222.00 1698.76 2043.10 1858.50 1321.98 1432.20 

1986 1234.30 1658.00 1478.10 1785.90 1427.30 1099.18 1497.15 1443.50 1280.50 1171.12 1266.20 

1987 1455.70 2151.91 1608.77 2003.70 1523.10 1709.20 1546.04 1899.95 1633.70 1372.19 1432.60 

1988 1525.10 2970.72 1928.50 2608.50 1662.50 1745.70 1820.97 1576.04 1620.30 1380.15 1605.99 

1989 1373.70 1719.40 1819.20 1996.00 1774.30 1663.60 1273.60 1816.77 1276.00 965.49 1368.30 

1990 1343.71 1934.01 2048.71 2006.60 1671.78 1626.35 1199.74 1454.56 1517.15 1672.49 1149.94 

1991 1513.65 1667.10 1588.29 2122.00 1631.00 1495.30 1788.70 1461.24 1020.60 1338.24 1558.10 

1992 1310.72 1709.30 2027.90 1754.00 1775.20 1460.24 1587.70 1493.91 919.10 1235.31 1301.30 

1993 1411.80 1507.40 1702.18 1498.80 1605.00 1199.87 1112.14 1449.10 1008.20 853.57 1168.20 
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Year X.8934060 X.8934061 X.8934078 X.8934096 X.8934098 X.8934105 X.8934116 X.8934119 X.8934134 X.8934143 X.8934155 

1994 1673.81 2357.10 2373.25 1954.10 2158.70 1779.50 1476.47 2024.90 1093.70 988.93 1611.70 

1995 1758.70 1989.60 1039.50 2007.00 1677.07 1558.70 1346.53 2077.90 1038.80 1206.11 1392.17 

1996 1828.50 1743.10 1540.49 2095.60 1432.57 1669.22 1751.74 1528.80 2130.00 1126.48 1500.27 

1997 1749.67 1788.50 2634.30 1618.90 1473.75 1328.95 1506.05 1338.60 1848.80 1001.76 1306.23 

1998 1438.80 1857.20 2274.80 1914.00 1762.85 1369.90 1614.34 1416.70 2023.10 1225.47 1368.12 

1999 1885.50 2069.50 2072.54 1749.70 1743.61 1230.50 1617.86 1301.00 2025.40 1321.65 1381.30 

2000 1540.20 1633.20 1273.26 1414.20 781.54 935.50 1129.89 1604.00 1081.10 813.35 1060.86 

2001 1653.20 1989.34 1670.07 2050.90 871.81 1011.00 1105.45 1844.90 881.90 1032.03 1383.75 

2002 1356.35 1889.80 2084.90 2145.40 1255.06 1890.60 1301.14 1658.46 983.00 1173.09 1492.28 

2003 1166.25 2042.54 2591.00 2110.30 1184.69 2142.61 1461.40 1529.45 1469.70 1078.96 1368.89 

2004 986.55 1721.24 1654.99 1624.10 1045.89 1678.60 1106.65 1428.83 1151.27 1004.45 1196.02 

2005 975.32 1807.63 1631.04 1723.90 1112.17 1436.05 1126.45 1305.16 829.95 1021.27 1190.28 

2006 1596.54 2361.28 2205.17 2558.38 1647.03 2085.04 1484.97 2010.23 1358.93 1464.25 1814.03 

2007 1145.56 1989.55 2278.40 2020.20 1269.56 1803.60 1360.11 1925.02 1511.40 1170.96 1357.27 

2008 1073.42 1923.90 1854.94 1975.50 1075.14 1935.48 1242.14 1720.00 1781.60 1049.75 1398.42 

2009 1076.35 1835.95 1615.68 1810.00 1025.39 1843.70 1125.60 1542.24 1507.31 1004.55 1224.10 

2010 1300.56 2380.50 2052.34 2175.90 1261.70 1338.67 1372.34 1868.70 2037.00 1153.74 1481.24 

2011 1315.31 1994.20 2299.55 2009.90 1259.63 2080.64 1721.78 1793.81 1686.80 1423.97 1542.58 

2012 1852.91 1852.46 3057.81 2247.60 1747.33 1375.06 1312.10 2509.01 1378.44 2168.06 1990.25 

2013 1860.96 2055.97 2759.60 4569.80 1607.82 1510.24 1766.00 2348.14 985.95 1296.38 2420.57 

2014 1399.57 2181.61 1820.46 3701.39 1180.18 1502.58 1418.13 1766.63 1006.43 1273.66 1973.04 

2015 1578.48 2140.71 3789.26 2226.20 1076.38 1882.17 1971.60 1849.10 1221.13 1175.90 2244.84 

2016 1486.97 1836.38 2235.92 1958.30 1087.36 1094.11 969.45 1787.16 811.77 803.61 1974.49 

2017 1689.88 2071.50 2433.36 2572.52 1734.87 1341.56 1437.83 2005.65 1123.72 1540.58 1840.95 
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Year X.8934156 X.8934183 X.8934191 

1980 1500.20 1349.90 211.58 

1981 1542.10 1633.10 715.93 

1982 2588.40 2098.80 824.42 

1983 2215.30 1828.20 645.77 

1984 2253.75 1699.57 839.60 

1985 2143.26 2137.80 862.00 

1986 1907.30 1546.02 861.40 

1987 2059.18 1632.29 640.10 

1988 2106.31 1750.59 816.92 

1989 1377.18 1499.31 670.23 

1990 1633.34 1746.51 864.35 

1991 1440.90 1586.70 856.10 

1992 1458.70 1682.10 595.10 

1993 1351.55 1760.85 692.60 

1994 1613.71 1779.56 790.02 

1995 1374.58 1891.30 787.06 

1996 1714.73 1855.51 868.36 

1997 1799.23 1696.72 904.30 

1998 1670.32 1822.70 985.30 

Year X.8934156 X.8934183 X.8934191 

1999 2156.70 1716.02 817.31 

2000 1077.60 1237.47 681.10 

2001 1214.69 1894.22 701.10 

2002 2063.90 1760.60 885.28 

2003 1808.80 1630.50 694.80 

2004 1485.93 1573.50 510.71 

2005 1297.63 1440.68 612.42 

2006 1937.27 2205.10 1039.57 

2007 2525.20 2048.53 531.89 

2008 2056.75 1763.36 1035.66 

2009 1865.30 1695.60 884.86 

2010 1775.30 1847.39 1095.80 

2011 1766.70 2113.73 1215.00 

2012 1709.43 1697.74 860.47 

2013 1843.84 1810.40 951.33 

2014 1655.29 1672.28 855.91 

2015 1772.76 1833.25 1144.93 

2016 1040.07 1311.91 704.22 

2017 1450.79 1646.19 814.76 
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Figure 13. Annual precipitation sums per station 
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4.1.2 Pan Evapotranspiration data 

For the application of the GR4J model, time series of potential evapotranspiration are 

needed. In our case, pan evaporation data is used, which is available from the KMD station 

in Kakamega, which is located around 50 km to the east of the Sio catchment. 

 

 

 

 
Figure 14. Long term mean values for annual, monthly and daily evapotranspiration (mm/d) 
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4.2 Spatial interpolation 

 
Following the method explained in chapter 3.2, the Thiessen Polygons were calculated, 

through ArcMap, for the stations available in the whole area of study. As is shown in Figure 

15, only 9 stations are taken into consideration for further calculations.  

 

Figure 15. Thiessen polygons applied to the study area 

Each station has a percentage of area from the whole catchment area (see Table 12), these 

percentages are multiplied with the rainfall time series, after the imputation process, to obtain 

one areal averaged precipitation for the sub-basin. The result of this procedure will end in a 

unique time series that is required as input for the hydrological model. 
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Table 12. Sub-basin area divided in corresponding Thiessen polygons 

ID Name DataType Area (km²) %in basin area 

8934030 Nangina Catholic Mission daily_WRADATA 18.01 1.78% 

8934134 Bungoma Water Supply daily_WRADATA 127.29 12.59% 

8934169 Kwangamor daily_WRADATA 344.78 34.11% 

8934161 Alupe Cotton Research Station daily_WRADATA 12.68 1.25% 

8934023 Sang'alo Institute Of Science & 
Technology 

10days_KMD 89.37 8.84% 

8934105 Busia Farmers Training Centre 10days_KMD 4.23 0.42% 

8934116 Amukura Chief's Centre 10days_KMD 38.38 3.80% 

8934155 Amagoro DO's Office 10days_KMD 33.36 3.30% 

8934156 Nambale Agricultural  Office 10days_KMD 342.81 33.91% 

  ∑area 1 010.90 100% 

 

4.2.1 Basin precipitation  

Based on the areal distribution obtained in the Thiessen polygons and the daily precipitation 

of the stations involved (See Table 12), the average precipitation inside the whole basin results 

in the following annual precipitation sums:  

Table 13. Basin annual precipitation sums 

Year Annual 
sums(m

m/a) 

1980 1028.39 

1981 1237.90 

1982 1685.32 

1983 1458.53 

1984 1339.46 

1985 1573.17 

1986 1287.62 

1987 1426.37 

1988 1555.85 

1989 1044.41 

1990 1053.80 

1991 1019.95 

1992 968.22 

1993 964.39 

Year Annual 
sums(m

m/a) 

1994 1234.76 

1995 1008.75 

1996 1420.57 

1997 1335.44 

1998 1361.66 

1999 1521.50 

2000 810.93 

2001 910.88 

2002 1324.19 

2003 1225.73 

2004 1063.46 

2005 969.09 

2006 1408.84 

2007 1470.53 

Year Annual 
sums(m

m/a) 

2008 1234.63 

2009 1109.89 

2010 1163.60 

2011 1221.42 

2012 1611.68 

2013 1625.08 

2014 1370.37 

2015 1764.08 

2016 1171.59 

2017 1375.42 

Long-
term 

mean 
annual 

1272.56 
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Figure 16. Long term mean values for annual, monthly and daily precipitation in the 

catchment 

 

4.3 Hydrological Modelling 

4.3.1 Input Data 

The aerial averaged rainfall time series obtained (Figure 17),the pan evapotranspiration time 

series (Figure 18) and the observed flow (Figure 19) are required as input. In contrast to 

precipitation and evapotranspiration, observed flow can include NA values. All time series must 
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be available for the same time period in our case for the period 1980-01-01 to 2017-12-32, a 

total of 37 years of data. 

 

 

Figure 17. Daily precipitation time series for Sio River sub-basin 

 

 

Figure 18. Pan evapotranspiration data used in this study originating from the pan 
measurements in Kakamega. 
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Figure 19. Observed flow in Sio River sub-basin 

4.3.2 Model set Up 
The model was configured based on three main aspects; (i) temporal extent, (ii) parameter 

definition and (iii) criterion selection. For the first aspect, 37 years of data are available. Of this 

37 years, one year of data is used for model warm up (Table 14). 

Table 14. Temporal settings 

Period Start date End date Days 

Data Sio  1980-01-01 2017-12-31 13880 

Model Run  1981-01-01 2017-12-31 13514 

Model Warm-Up 1980-01-01 1980-12-31 366 

 

In Chapter 3.3.1.1 the importance of the initial selection of the parameters and its relation to 

the 80% confidence interval suggested by Perrin et al. (2003) was mentioned, hence the first 

attempt of the model is defined with the parameters in Table 15. All 4 parameters are selected 

inside the recommended range 

Table 15. Initial selection of parameters 

Parameter Description Unit 
Initial 
value 

80% Confidence 
interval 

x1 production store capacity mm 70 100-1200 

x2 
intercatchment exchange 

coefficient 
mm/d -1 -5 – 3 

x3 routing store capacity mm 100 20-300 

x4 
unadjusted unit hydrograph time 

constant 
days 1.5 1.1 - 2.9 
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4.3.3 Calibration results 
The calibration function implemented in the R package “airGR” uses the Irstea procedure 

described by Michel (1991), which optimizes the error criterion selected for the objective 

function. According to the package description, “The algorithm combines a global and a local 

approach. First, a screening is performed using either a rough predefined grid or a list of 

parameter sets. Then a steepest descent local search algorithm is performed, starting from the 

result of the screening procedure. For this search, since the ranges of parameter values can 

be quite different, simple mathematical transformations are applied to parameters to make 

them vary in a similar range and get a similar sensitivity to a predefined search step.”  

All these candidates are tested and the best one is kept being the starting point for the next 

iteration. At the end of each iteration, the search step is either increased or decreased to adapt 

the progression speed. A composite step can occasionally be done. The calibration algorithm 

stops when the search step becomes smaller than a predefined threshold. 

Table 16. Parameter value 

    User 
defined 

After   
calibration 

Coef Description Unit Range Initial 
value 

NSE KGE 

x1 Capacity of production 
soil store (SMA) 

mm 100-1200 70 396.52    177.83 

x2 Water exchange 
coefficient 

mm -5 – 3 -1 2.79   2.46 

x3 Capacity of the routing 
store 

mm 20-300 100 26.14    24.15 

x4 Time parameter for 
unit hydrographs 

days 1.1 - 2.9 1.5 1.25 2.32 

 

With this on mind, after the calibration was done, the parameters obtained, as expected, lay 

inside the provide range (Table 16), while the error obtained within the last iterations improved 

towards a better fit of the model. The calibration resulted in a poor NSE of 0.24 (Figure 20) 

and a KGE of 0.56 (Figure 21). Although the KGE had  0.56 as final value, Rogelis et al. (2016) 

suggested a “good” model when KGE is larger than 0.5.  

This qualification of good or bad model goes further than the value obtained at the end of the 

calibration, for example in NSE model low flows are greatly overestimated and some periodical 

events peaks are completely ignored, while other peaks are considerable higher than the 

measured value. In KGE case, most of the periodical peaks and low flow values are more or 

less represented but there is a higher frequency of extreme values than what is observed with 

the measured values. Though many of the misestimation can be attributed to model 

performance, is also likely to have these discrepancies due to measurement errors. 

Table 17. Error criterion before and after calibration with NSE and KGE eq. 

 
Error criterion based on the NSE 

formula 
Error criterion based on the KGE 

formula 

Initial -0.216 0.112 

After 
calibration 

0.242 0.557 
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Figure 20. Model output after calibration based on the NSE.  
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Figure 21. Model output after calibration based on the KGE 
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The final output of the hydrological model is a simulated flow, which corresponds to the solution 

that best fits to the observed flow, using the given data and the runoff model structure. In this 

case, the model calibrated using the KGE the with NSE as optimization functions. Therefore, 

two different optimal results are found (Figure 22).  

 

Figure 22. Observed streamflow and simulated streamflow with KGE and NSE 

It can be observed that the NSE leads to higher baseflow values and lower peaks, while KGE 

generates higher flood peaks and lower baseflow. 

The annual, monthly and daily long-term mean values for both simulated flows and observed 

flow are shown in the next figure. This should allow for a better understanding of the results 

and allow for a comparison. 
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KGE NSE Observed flow 

   

   

   
Figure 23. Long-term mean values for annual, monthly and daily flow simulated with KGE and NSE and for the observed streamflow  
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4.3.4 Model performance / discussion 

The model can predict general trends of the flow, if it will increase or decrease, both with KGE 

and NSE. However, it is not accurate on the quantification of the flow, as there is a constant 

overestimation of the flow peaks (extreme values) and the base flow is often overestimated as 

well. Therefore, the model performance should be improved. 

The model performance depends on several factors, including the model structure itself and 

how well it can represent reality, but also other variables such as the quality of the input data, 

and the parameter ranges used in the model. 

In this case study, there is high uncertainty in the input data. The temporal and spatial 

interpolation allowed for filling the data gaps, but it is not possible to determine how close those 

interpolations are to the reality. Thus, the precipitation and evapotranspiration used as input 

parameters for the model are the best available. 

If the input data are unprecise, when the hydrological model tries to fit the simulated flow to 

the measured one, the parameters which define the relationship between the natural 

processes might be unrealistic. 

The hydrological model provides the expected relationship between potential and actual 

evapotranspiration, as actual evapotranspiration value provided by the model is lower than the 

measured pan evapotranspiration. This can be observed in Figure 24. 

 

Figure 24. Pan evapotranspiration used as input and resulting actual evapotranspiration from 
the hydrological model. 

 

An extension of the parameter range would allow finding new optimal solutions. Nonetheless, 

it is important to note that model parameters represent a natural process, and that the 

boundaries used are defined in literature. In this example, the parameter values tend to go to 

extremes, which leads to the idea that the absolute optimum is outside the parameter range. 

However, this can also mean that there is some natural process happening which is not 

considered or well defined in the model, and therefore, the model would tend to find a 

mathematical optimal to fit the reality.  
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This might very well be the case in the Sio basin, as the studied area has some wetlands and 

swamps. The processes, for example, that take place in swamps are not reflected in the GR4J 

model. GR4J is a lumped model, where different land uses within the catchment are ignored. 

Moreover, it is important to point out that not only the model input data contain uncertainties, 

but also the observed flow. It is usually not the streamflow what is measured, but the water 

level, which is afterwards converted to a discharge rate using a rating curve. The rating curve 

is specific for each gauging station and should be defined by regular measurements where the 

water level is measured, and the streamflow is calculated with the velocity-area method. The 

measurements of water level and discharge to define the rating curve should be done at 

different flow conditions, ranging from low to high flows, in order to reduce uncertainties. 

In this case, it is difficult to determine how realistic the water level peaks in the observed flow 

are, as there is no information about the rating curve that was used. However, it seems to be 

an upper limit in the measured peak flows. In this case, the gauging station is under a bridge, 

and when the water reaches the top level and the are is flooded, the water level would 

theoretically increase, but it is not contained in the river channel and, therefore leading to an 

underestimation of peak flows. When the model tries to fit the input data to some flow values 

which are underestimated, the hydrological model tries to mathematically fit the reality by giving 

parameter values which do not reflect reality. Therefore, it is important to be aware of the 

uncertainties in the streamflow values. 

 

4.4 Estimation of Extreme Values of discharge 

4.4.1 Return period from observed flow 

 

 
Figure 25. Extreme value distribution with MLE of the observed streamflow 
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Figure 26. Extreme value distribution with L-moments of the observed streamflow 

 

4.4.2 Return period from simulated flow with KGE 

 

Figure 27. Extreme value distribution with MLE of the flow simulated with KGE 
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Figure 28. Extreme value distribution with L-moments of the flow simulated with KGE 

 

4.4.3 Return period from simulated flow with NSE 

 

 

Figure 29. Extreme value distribution with MLE of the flow simulated with NSE 
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Figure 30. Extreme value distribution with L-moments of the flow simulated with NSE 

 

4.4.4 Discussion of extreme value estimation 

The results of the extreme value distribution models have to be interpreted cautiously and with 

understanding of the error and uncertainty sources. As in any forecasting, its accuracy 

depends on the quality of the observations or input data, and of the model performance itself.  

Regarding the quality of the input data, it is important to keep in mind that only the maximum 

annual values have been taking into consideration. Figure 31, Figure 32 and Figure 33 show 

the extreme values obtained with the observed flow and flow simulated with KGE and NSE in 

the hydrological model. 

The return periods obtained with the simulated stream values will probably be too high, as the 

peaks were much higher than the maximum observed flow values. The observed values will, 

however, lead to too low values, as some years do not have a full timeseries. Figure 31 shows 

that some years with uncomplete time series have lower maximum values.  
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Figure 31. Maximum annual observed flow 

 
 

 
Figure 32. Maximum simulated flow with NSE 

 
 

 
Figure 33. Maximum simulated flow with KGE 
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Regarding the performance of the extreme value forecasting models, the resulting return levels 

for the return periods of 10 years, 30 years, 50 years and 100 years, is displayed in Figure 34 

and Table 18. 

 

Figure 34. Return levels for each return period obtained with each method 

 

Table 18. Streamflow values obtained with each method for each return period. 
 

T2 T10 T30 T50 T100 

 mm/d m3/s mm/d m3/s mm/d m3/s mm/d m3/s mm/d m3/s 

Qobs  
(MLE) 

5.06 335.84 5.92 392.80 6.06 402.09 6.09 404.17 6.12 405.89 

Qobs   
(L-moments) 

5.04 334.50 5.95 394.93 6.11 405.55 6.15 408.03 6.18 410.13 

Qsim with 
NSE (MLE) 

3.93 260.64 9.60 636.74 14.65 972.06 17.52 1161.98 22.06 1463.07 

Qsim with 
NSE (L-
moments) 

7.00 464.57 14.65 971.84 19.44 1289.44 21.67 1437.59 24.73 1640.62 

Qsim with 
KGE (MLE) 

6.94 460.07 14.52 963.33 19.48 1292.28 21.85 1449.37 25.15 1668.45 

Qsim with 
KGE (L-
moments) 

7.00 464.57 14.65 971.84 19.44 1289.44 21.67 1437.59 24.73 1640.62 

It can be seen, that the extreme values forecast with the observed data leads to a less variable 

behavior, since higher return levels only lead to a slight increase in discharge. For example, 

based on the observed discharge, the increase in discharge between a HQ50 and HQ100 is only 
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0.4 to 0.5%, which seems unrealistic. At the same time, the simulated streamflow values show 

a much higher increase of the return levels, ranging between 14 and 26 %, depending on the 

on model setup and data used. 

The extreme values obtained with KGE-based simulations are higher than those obtained with 

NSE-based simulations. The extreme values obtained with both methods for estimating the 

parameters of the GEV are similar.  

The parameter estimation with L-moments provided higher return level values than the one 

with MLE in most of the cases. However, in the simulated flow with KGE, the method that has 

resulted in higher return levels was the MLE, especially for high return levels. 

Overall, the main difference is found between the simulated and observed flow. The differences 

between the simulation data based on the different calibration objective functions (NSE/KGE) 

or between the parameter estimation methods  (MLE/L-moments) are smaller.  

It is difficult to interpret the results due to the high level of uncertainty. This uncertainty level 

increases with the return period. Therefore, the differences between the return level values 

increase at higher return periods. 

With the aim of providing a more visual and understanding overview of the obtained results, 

Figure 35 shows the return levels obtained with the different techniques plotted as a box-plot 

for each calculated return period.  

 

Figure 35… Return level boxplot (m³/s) 
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5 Summary and conclusions 

The aim of this study, conducted in the Sio River Basin (1011 km²), Western Kenya, was to 

provide  

i. complete time series of precipitation for several stations in the region, 

ii. the mean catchment precipitation by interpolating the station data, 

iii.  the set-up and application of a hydrological model to extend information of flow for 

the Sio and  

iv. (the estimation of extreme values of discharge for different return periods based on 

different data sets.  

Data analysis is subject and heavily influenced by the quality and quantity of data. Wrong data 

will lead to wrong analysis, models and results. This is to say, that all procedures here 

elaborated are directly linked to the measurements in field.  For this analysis was assumed 

that all data series were correctly gauged.  

In addition, the assumption of mean areal rainfall distribution assumes a unique value for the 

whole catchment and cannot not describe the heterogeneity of rainfall conditions in the basin. 

In particular, the influence of the elevation on meteorological parameters can be significant. 

For this study, it is however assumed, that the heterogeneity is not strongly pronounced due 

to the small elevation differences in the area. 

Temporal imputation done by linear regression based on best correlation stations is a robust 

technique to fill data gaps. It does not exclude data sets, but since the data obtained  to fill the 

gap is calculated with the slope of the linear regression, all the values calculated with it will fall 

in the same line, which is not able to show the natural fluctuation of the values. 

Moreover, the proportionality of rain among 10 days can vary from one station to another, even 

if they show a high correlation value. Certainly, all assumptions made here were chosen with 

the best knowledge, despite their limitations. 

Consequently, when the hydrological model tries to fit the simulated flow to the measured one, 

the parameters which define the relationship between the natural processes might be 

unrealistic.It can be observed that the NSE leads to higher baseflow values and lower peaks, 

while KGE generates higher flood peak values but lower baseflow. The KGE fits better to the 

observed values than NSE.  

The extreme values forecast with the observed data leads to a less variable behavior, 

compared to the return levels obtained with the simulated flow values. 

The return periods obtained with the simulated streamflow values will probably be too high, as 

the peaks were much higher than the maximum observed flow values. The return periods 

obtained with the observed flow will probably be too low, as in many cases the observation 

time series were not complete and there are indications, that the observations are erroneous 

in high flow conditions, since the bridge culvert, where the gauging station is located, may be 

limited in capacity. 

It is difficult to interpret the estimated discharge values for different return periods due to the 

high level of ambiguity. Biases may increase with the application of hydrological and 

forecasting models. Additionally, uncertainty levels increase with the length of the time 

projection or forecasting period. Therefore, the dispersion between the return level values 

increases at higher return periods.  

In conclusion, results from this study must be used with caution and reservations.  
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7 Appendix 

7.1 Long term mean precipitation values per station 
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7.2 GR4J modelling results with Chirps 
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After 

calibration 
ONLY WITH 

CHIRPS 

Coef Description Unit Range NSE KGE NSE KGE 

x1 
Capacity of production 

soil store (SMA) 
mm 

100-
1200 

396.52 177.83 149.97 143.67 

x2 
Water exchange 

coefficient 
mm -5 – 3 2.79 2.46 -2.98 -0.32 

x3 
Capacity of the routing 

store 
mm 20-300 26.14 24.15 300.00 300.00 

x4 
Time parameter for 
unit hydrographs 

days 1.1 - 2.9 1.25 2.32 1.26 2.17 

 

    

 
Error criterion 

based on the NSE 
formula 

Error criterion 
based on the KGE 

formula 

Error criterion 
based on the 
NSE formula 

Error criterion 
based on the 
KGE formula 

After 
calibration 

0.242 0.557 0.44 0.71 

 

 

 

 

 


