

Hungary

Professional background

- 2009: Master degree in Biology
- 2014: PhD in Environmental Biology

Eötvös Loránd University, Budapest

- 2015-2016: 5 months with an Ernst Mach Worldwide Grant at WasserCluster Lunz
 - Doing experimental ecology

- 2016-2018: Postdoctoral fellow at WasserCluster Lunz
 - Project: ChrysoWeb The effect of mixotrophic chrysophytes on secondary productivity in pelagic food webs

Professional background

• **Limnology** = the study of inland waters (equivalent of oceanography but focusing on continental waters)

 Aquatic ecology = studying the interactions among aquatic organisms and their environment and among the organisms themselves

 Plankton ecology = focus on the tiny drifting organisms of the open water

PhD studies

- Ecology and conservation value of ponds and their zooplankton
 - → Ponds are uniqe for biodiversity!
- Empirical studies

WasserCluster Lunz

International atmosphere

Biological Station

Our lab:

https://aquascalelab.wordpress.com/

Biological Station

Well-equipped labs

Walk-in climate chamber

Outdoor experimental facilities

Lake lab with boat

Zooplankton

In freshwaters...

Tiny crustaceans

Rotiferans

Even jellyfish...

Importance

 Key component of the aquatic food webs both in the marine and freshwater systems

Important food source for larval and adult fish

Grazers of phytoplankton, bacteria, other unicellulsar organisms

Crustaceans in the zooplankton

Water fleas:

Copepods

Global change

- any consistent trend in the environment that has a global effect
- Examples:
 - Increasing UV-B radiation
 - Biodiversity loss
 - Rising atmospheric greenhouse gases concentrations
 - Eutrophication
 - Land use changes
 - Global Climate change
 - Warming
 - Extreme events

Effects of climate change on lakes...

- Increase in surface water temperature
- Reduction of ice cover
- Melting of glaciers that affect stream discharge
- Salinisation
- Changes in hydrological regime: Drought

These all have serious ecological consequences!

Global increase in surface temperature

Oligotrophic lakes

- The plankton of eutrophic (nutrient-rich) lakes are widely discussed, but much less attention is paid to oligotrophic (nutrient-poor) lakes, such as lakes in the Alps
- Warming extended periods of summer stratification
- Browning due to increased runoff of terrestrial organic matter

Chrysophyte algae (=Golden algae)

Mixotrophic:

- Able to feed both phagotrophically (on bacteria) and phototrophically
- Analogous to carnivorous plants

What are the implications of golden algae blooms in aquatic food webs?

Lake Lunz

- Nutrient-poor (oligotrophic) lake at 600m elevation
- Regularly monitored

In the 50s...

Uroglena blooms in lake Lunz

Isolating and maintaining cultures

Zooplankton

Feeding experiments

Target species

Results

- Both algae have negative effects on zooplankton
- The effects were species-specific among zooplankters
- Food quality: water fleas are more tolerant

Physical interference: copepods are more tolerant

What are the implications of golden algae blooms in aquatic food webs?

